Ung Hee Lee

Portfolio: unghee.github.io Github: github.com/unghee Email: unghee@umich.edu Mobile: +1-734-272-9574

• The University of Michigan • Ph.D. in Mechanical Engineering, Focus: Robotics; GPA: 3.9/4.0	Ann Arbor, MI Sep 2015 - Aug 2022
Dissertation: Actuation, Control, and Customization: Key Elements Toward Real-world Deployment of Po Committee: Elliott Rouse, Schoon Ha, Ram Vasudevan, Robert Gregg	- •
• Korea University Bachelor of Science - Physics; GPA: 4.0/4.5	Seoul, Korea Sep. 2009- Feb. 2015
Skills Summary	
• Programming Languages Python, C/C++, Matlab	
• Frameworks/Tools Scikit, TensorFlow, TFLite, Keras, GIT, Google Colab	
• Platforms Linux, Windows, Raspberry Pi, Jetson Nano	
Industry Experience	
Nuro Software Engineer in Planning & Control	Mountain View, CA July 2022 - Present
(Coorle) X	Mountain View, CA
(Google) X Resident, ML for Robotics	May 2021 - Dec 2021
Mentored by Dr. Jie Tan, Dr. Georgios Evangelopoulos	111 ay 2021 Dec 2021
• Research and development for a project focused on mobility assistance	
• Develop ML models for control of robotic systems	
• Implement ML-based controllers on-device with high bandwidth, safety and reliability require	nents
Nuro	Mountain View, CA
Software Engineering Intern, Planning & Control	Jun 2020 - Aug 2020
Mentored by Dr. Mohammad Shakiba	
 Improve Nuro's self-driving control system with an emphasis on energetic efficiency and smoot Implement and develop a regenerative braking system 	h control
Fetch Robotics	San Jose, CA
Software Engineering Intern	Jun 2017 - Aug 2017
Mentored by Dr. Russell Toris	
• Develop 3D object segmentation system for mobile manipulators using RGB-D images	
• Segmentation utilized for grasp calculation in Programming by Demonstration	
Academic Experience	
Neurobionics Lab	Ann Arbor, MI
Doctoral Research Assistant	Sep 2017 - Present
Advised by Dr. Elliott Rouse	
• Develop intelligent exoskeleton by employing image-based intent recognition system	
• Develop preference-based reinforcement learning controller for locomotion	
• Develop a system of predicting biomechanical signal using sensor-fusion based ML approach	
The Laboratory for Progress Software Engineering Intern, Planning & Control	Ann Arbor, MI Jan 2016 - May 2016
	Jun 2010 - May 2010
 Mentored by Dr. Chad Jenkins Implement grasp localization for mobile manipulator. 	
 Localize grasp affordance in 3D point Clouds 	
SIDE PROJECTS	
• Exploring biases in CNNs for supervised monocular depth estimation: Examine CNNs tr datasets are susceptible to over-reliance on certain features or visual cue	ained on monocular depth
• Query-Efficient Preference-Based Reinforcement Learning with Active Learning: Develo	op query-efficient and

• Reinforcement Learning with Musculoskeletal Models, NeurIPS 2019 Competition: Learn to Move - Walk Around: Develop an intelligent controller for a physiologically plausible human model to run in a physics-based simulation environment

SOFTWARE DEVELOPMENT

- Intent Recognition System for Predicting Locomotor Activities
- Robot Operating System (ROS) Package Wrapper for RGBD segmentation

PEER REVIEWED PUBLICATIONS

- V Shetty, **U Lee**, K Ingraham, E J Rouse. A Data Driven Approach for Predicting Preferred Ankle Stiffness of a Quasi-Passive Prosthesis. *IEEE Robotics and Automation Letters with Presentation at International Conference on Robotics and Automation 2022.*
- U Lee, J Bi, R Patel, D Fouhey, and E J Rouse. Image Transformation and CNNs: A Strategy for Encoding Human Locomotor Intent for Autonomous Wearable Robots. *IEEE Robotics and Automation Letters with Presentation at International Conference on Intelligent Robots and Systems* 2020.
- U Lee, C Pan, and E J Rouse. Empirical Characterization of a High-performance Exterior-rotor Type Brushless DC Motor and Drive. *IEEE International Conference on Intelligent Robots and Systems* 2019.
- J Xu, T Bao, **U Lee**, C Kinnaird, W Carender, Y Huang, K H Sienko, P B Shull. Configurable, Wearable Sensing and Vibrotactile Feedback System for Real-time Postural Balance and Gait Training: Proof-of-Concept. *Journal of NeuroEngineering and Rehabilitation* 2017.
- J Xu, U Lee, T Bao, Y Huang, K H Sienko, P B Shull. Wearable Sensing and Haptic Feedback Research Platform for Gait Retraining. *IEEE International Conference on Wearable and Implantable Body Sensor Networks* 2017.
- J Choi, H Kang, S Chung, Y Kim, **U Lee**, J Lee, S Kim, M Chun, H Kim. Detecting Voluntary Gait Intention of Chronic Stroke Patients Towards Top-down Gait Rehabilitation using EEG. International Conference of the IEEE Engineering in Medicine and Biology Society 2016.

CONFERENCE WORKSHOP PAPERS AND ABSTRACTS

- D Kent, U Lee, S Elliott, R Toris. Leveraging Autonomous Segmentation and Grasp Calculation for Programming by Demonstration. *IEEE International Conference on Robotics and Automation : Machine Learning in the Planning and Control of Robot Motion Workshop* 2018.
- U Lee, J Choi, S Chung, H Kim. Comparing the Performance of Movement Artifact Removal Algorithm between Wired and Wireless EEG Data Acquisition System. 7th International IEEE EMBS Conference on Neural Engineering 2015

CONFERENCE POSTERS AND DEMONSTRATION

- U Lee, N. Doraiswamy, J. Ferris, S. Gupta. Query-Efficient Preference-Based Reinforcement Learning with Active Learning. Eastern European Machine Learning Summer School 2021
- V. Shetty, **U Lee**, E J Rouse. A data driven approach for predicting preferred ankle stiffness. 8th IEEE RAS/EMBS International Conference on Biomedical Robotics & Biomechatronics 2020.
- U Lee, K Ingraham, E J Rouse, A Azocar. Innovations in Controls of Agricultural Exoskeleton. 8th Annual D. Dan & Betty Kahn Michigan-Israel Partnership Symposium 2019.
- E J Rouse, L Hargrove, A Azocar, U Lee. The Open Source Leg. Amazon re:MARS 2019.
- U Lee, A Azocar, E J Rouse. The Open Source Leg: Steps Toward Real-world Deployment of Bionics. *IEEE International Conference on Robotics and Automation: Towards Real-World Deployment of Legged Robots Workshop* 2019. The Best Poster Award
- U Lee, E J Rouse. Torque Control of the Open-source Leg Prosthesis. Dynamic Walking 2018
- U.Lee, J. Fan, Z. Zhou, Z. Sui, K. Desingh, C. Jenkins: Handle Grasp Localization for Manipulation in Clutter. *Robotics Science and Systems* 2016.
- U.Lee, J. Fan, Z. Zhou, Z. Sui, K. Desingh, C. Jenkins: Handle Grasp Localization for Manipulation in Clutter. *IEEE International Conference on Robotics and Automation* 2016.

HONORS AND AWARDS

• Semester High Honors, Korea Universi	ty	2009, 2012, 2013, 2014
• SNational Science and Engineering Sch	olarship, Government of South Korea	2013 - 2014
• National Honors Scholarships, Governme	nent of South Korea	2009
	2	

PROFESSIONAL MEMBERSHIPS AND SERVICE

• Student Member, IEEE Society	2018- $Present$
• Student Member, IEEE Robotics and Automation Society	2018- $Present$
• Reviewer, IEEE Engineering in Medicine and Biology Conference	2019

References

- Dr. Elliott Rouse ejrouse@umich.edu Associate Professor, Department of Mechanical Engineering, Robotics Institute, University of Michigan Technical Advisor, X the Moonshot Factory
- Dr. Georgios Evangelopoulos gevang@x.team Research Scientist, X the Moonshot Factory
- Dr. Sehoon Ha sehoonha@gatech.edu Assistant Professor, School of Interactive Computing, Georgia Institute of Technology Research Scientist, Google Brain
- Dr. Hyungmin Kim hk@kist.re.kr Principal Research Scientist, Center For Bionics, Korea Institute of Science and Technology